Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
International journal of imaging systems and technology ; 32(2):444-461, 2022.
Article in English | EuropePMC | ID: covidwho-1801461

ABSTRACT

Coronavirus disease (COVID‐19) has had a major and sometimes lethal effect on global public health. COVID‐19 detection is a difficult task that necessitates the use of intelligent diagnosis algorithms. Numerous studies have suggested the use of artificial intelligence (AI) and machine learning (ML) techniques to detect COVID‐19 infection in patients through chest X‐ray image analysis. The use of medical imaging with different modalities for COVID‐19 detection has become an important means of containing the spread of this disease. However, medical images are not sufficiently adequate for routine clinical use;there is, therefore, an increasing need for AI to be applied to improve the diagnostic performance of medical image analysis. Regrettably, due to the evolving nature of the COVID‐19 global epidemic, the systematic collection of a large data set for deep neural network (DNN)/ML training is problematic. Inspired by these studies, and to aid in the medical diagnosis and control of this contagious disease, we suggest a novel approach that ensembles the feature selection capability of the optimized artificial immune networks (opt‐aiNet) algorithm with deep learning (DL) and ML techniques for better prediction of the disease. In this article, we experimented with a DNN, a convolutional neural network (CNN), bidirectional long‐short‐term memory, a support vector machine (SVM), and logistic regression for the effective detection of COVID‐19 in patients. We illustrate the effectiveness of this proposed technique by using COVID‐19 image datasets with a variety of modalities. An empirical study using the COVID‐19 image dataset demonstrates that the proposed hybrid approaches, named COVID‐opt‐aiNet, improve classification accuracy by up to 98%–99% for SVM, 96%–97% for DNN, and 70.85%–71% for CNN, to name a few examples. Furthermore, statistical analysis ensures the validity of our proposed algorithms. The source code can be downloaded from Github: https://github.com/faizakhan1925/COVID-opt-aiNet.

2.
JMIR Public Health Surveill ; 8(5): e32543, 2022 05 27.
Article in English | MEDLINE | ID: covidwho-1686320

ABSTRACT

BACKGROUND: The rollout of vaccines for COVID-19 in the United Kingdom started in December 2020. Uptake has been high, and there has been a subsequent reduction in infections, hospitalizations, and deaths among vaccinated individuals. However, vaccine hesitancy remains a concern, in particular relating to adverse effects following immunization (AEFIs). Social media analysis has the potential to inform policy makers about AEFIs being discussed by the public as well as public attitudes toward the national immunization campaign. OBJECTIVE: We sought to assess the frequency and nature of AEFI-related mentions on social media in the United Kingdom and to provide insights on public sentiments toward COVID-19 vaccines. METHODS: We extracted and analyzed over 121,406 relevant Twitter and Facebook posts, from December 8, 2020, to April 30, 2021. These were thematically filtered using a 2-step approach, initially using COVID-19-related keywords and then using vaccine- and manufacturer-related keywords. We identified AEFI-related keywords and modeled their word frequency to monitor their trends over 2-week periods. We also adapted and utilized our recently developed hybrid ensemble model, which combines state-of-the-art lexicon rule-based and deep learning-based approaches, to analyze sentiment trends relating to the main vaccines available in the United Kingdom. RESULTS: Our COVID-19 AEFI search strategy identified 46,762 unique Facebook posts by 14,346 users and 74,644 tweets (excluding retweets) by 36,446 users over the 4-month period. We identified an increasing trend in the number of mentions for each AEFI on social media over the study period. The most frequent AEFI mentions were found to be symptoms related to appetite (n=79,132, 14%), allergy (n=53,924, 9%), injection site (n=56,152, 10%), and clots (n=43,907, 8%). We also found some rarely reported AEFIs such as Bell palsy (n=11,909, 2%) and Guillain-Barre syndrome (n=9576, 2%) being discussed as frequently as more well-known side effects like headache (n=10,641, 2%), fever (n=12,707, 2%), and diarrhea (n=16,559, 3%). Overall, we found public sentiment toward vaccines and their manufacturers to be largely positive (58%), with a near equal split between negative (22%) and neutral (19%) sentiments. The sentiment trend was relatively steady over time and had minor variations, likely based on political and regulatory announcements and debates. CONCLUSIONS: The most frequently discussed COVID-19 AEFIs on social media were found to be broadly consistent with those reported in the literature and by government pharmacovigilance. We also detected potential safety signals from our analysis that have been detected elsewhere and are currently being investigated. As such, we believe our findings support the use of social media analysis to provide a complementary data source to conventional knowledge sources being used for pharmacovigilance purposes.


Subject(s)
COVID-19 , Drug-Related Side Effects and Adverse Reactions , Social Media , Vaccines , Artificial Intelligence , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Humans , Pharmacovigilance , SARS-CoV-2 , United Kingdom/epidemiology , Vaccination/adverse effects
3.
Int J Imaging Syst Technol ; 32(2): 444-461, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1605691

ABSTRACT

Coronavirus disease (COVID-19) has had a major and sometimes lethal effect on global public health. COVID-19 detection is a difficult task that necessitates the use of intelligent diagnosis algorithms. Numerous studies have suggested the use of artificial intelligence (AI) and machine learning (ML) techniques to detect COVID-19 infection in patients through chest X-ray image analysis. The use of medical imaging with different modalities for COVID-19 detection has become an important means of containing the spread of this disease. However, medical images are not sufficiently adequate for routine clinical use; there is, therefore, an increasing need for AI to be applied to improve the diagnostic performance of medical image analysis. Regrettably, due to the evolving nature of the COVID-19 global epidemic, the systematic collection of a large data set for deep neural network (DNN)/ML training is problematic. Inspired by these studies, and to aid in the medical diagnosis and control of this contagious disease, we suggest a novel approach that ensembles the feature selection capability of the optimized artificial immune networks (opt-aiNet) algorithm with deep learning (DL) and ML techniques for better prediction of the disease. In this article, we experimented with a DNN, a convolutional neural network (CNN), bidirectional long-short-term memory, a support vector machine (SVM), and logistic regression for the effective detection of COVID-19 in patients. We illustrate the effectiveness of this proposed technique by using COVID-19 image datasets with a variety of modalities. An empirical study using the COVID-19 image dataset demonstrates that the proposed hybrid approaches, named COVID-opt-aiNet, improve classification accuracy by up to 98%-99% for SVM, 96%-97% for DNN, and 70.85%-71% for CNN, to name a few examples. Furthermore, statistical analysis ensures the validity of our proposed algorithms. The source code can be downloaded from Github: https://github.com/faizakhan1925/COVID-opt-aiNet.

4.
J Med Internet Res ; 23(4): e26627, 2021 04 05.
Article in English | MEDLINE | ID: covidwho-1195982

ABSTRACT

BACKGROUND: Global efforts toward the development and deployment of a vaccine for COVID-19 are rapidly advancing. To achieve herd immunity, widespread administration of vaccines is required, which necessitates significant cooperation from the general public. As such, it is crucial that governments and public health agencies understand public sentiments toward vaccines, which can help guide educational campaigns and other targeted policy interventions. OBJECTIVE: The aim of this study was to develop and apply an artificial intelligence-based approach to analyze public sentiments on social media in the United Kingdom and the United States toward COVID-19 vaccines to better understand the public attitude and concerns regarding COVID-19 vaccines. METHODS: Over 300,000 social media posts related to COVID-19 vaccines were extracted, including 23,571 Facebook posts from the United Kingdom and 144,864 from the United States, along with 40,268 tweets from the United Kingdom and 98,385 from the United States from March 1 to November 22, 2020. We used natural language processing and deep learning-based techniques to predict average sentiments, sentiment trends, and topics of discussion. These factors were analyzed longitudinally and geospatially, and manual reading of randomly selected posts on points of interest helped identify underlying themes and validated insights from the analysis. RESULTS: Overall averaged positive, negative, and neutral sentiments were at 58%, 22%, and 17% in the United Kingdom, compared to 56%, 24%, and 18% in the United States, respectively. Public optimism over vaccine development, effectiveness, and trials as well as concerns over their safety, economic viability, and corporation control were identified. We compared our findings to those of nationwide surveys in both countries and found them to correlate broadly. CONCLUSIONS: Artificial intelligence-enabled social media analysis should be considered for adoption by institutions and governments alongside surveys and other conventional methods of assessing public attitude. Such analyses could enable real-time assessment, at scale, of public confidence and trust in COVID-19 vaccines, help address the concerns of vaccine sceptics, and help develop more effective policies and communication strategies to maximize uptake.


Subject(s)
Artificial Intelligence , COVID-19 Vaccines/administration & dosage , Public Opinion , Social Media/statistics & numerical data , Vaccination/psychology , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/psychology , Humans , Natural Language Processing , Patient Acceptance of Health Care , SARS-CoV-2/isolation & purification , United Kingdom/epidemiology , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL